Skip to content
markdown
# Day 29: Texture Memory (Practical)


<NolebasePageProperties />





In this lesson, we implement an image processing kernel using CUDA texture memory. We will create a simple grayscale conversion kernel that reads an input image from texture memory and produces a grayscale output. Texture memory is optimized for spatially coherent (2D) data and provides built-in caching and addressing modes, which are particularly beneficial for image processing applications.

> **Key Pitfall:**  
> Incorrect normalized coordinates can lead to invalid texture fetches. Ensure that if you use normalized coordinates, you supply values in the range [0, 1]. In this example, we use unnormalized coordinates.

**References:**  
- [CUDA C Programming Guide – Texture Reference](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#texture-memory)  
- [CUDA C Best Practices Guide – Texture Memory](https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#texture-memory)

---

## Table of Contents

1. [Overview](#1-overview)  
2. [Understanding Texture Memory](#2-understanding-texture-memory)  
3. [Practical Exercise: Grayscale Image Conversion Using Textures](#3-practical-exercise-grayscale-image-conversion-using-textures)  
    - [a) Kernel Code: Grayscale Conversion](#a-kernel-code-grayscale-conversion)  
    - [b) Host Code: Setting Up Texture Memory and Launching Kernel](#b-host-code-setting-up-texture-memory-and-launching-kernel)  
4. [Common Debugging Pitfalls](#4-common-debugging-pitfalls)  
5. [Conceptual Diagrams](#5-conceptual-diagrams)  
6. [References & Further Reading](#6-references--further-reading)  
7. [Conclusion](#7-conclusion)  

---

## 1. Overview

Texture memory is a **read-only memory space** in CUDA that is optimized for 2D data access patterns. It offers:
- **Hardware caching** for faster fetches.
- **Built-in addressing modes** (e.g., clamp, wrap) that simplify image boundary handling.
- **Interpolation capabilities** (e.g., linear filtering) if needed.

In this project, we implement a kernel that converts a color image to grayscale using texture memory. The pipeline includes:
- Allocating a CUDA array to hold the image.
- Copying image data from the host to the CUDA array.
- Binding the CUDA array to a texture reference.
- Launching a kernel that uses `tex2D()` to sample the image.
- Unbinding the texture and copying the output back to the host.

---

## 2. Understanding Texture Memory

Texture memory in CUDA is ideal for applications where data is accessed in a spatially coherent manner. It is cached, which reduces latency when multiple threads access nearby data locations. When using texture memory:
- **Texture coordinates:**  
  Can be normalized (range [0, 1]) or unnormalized (actual pixel indices).  
  In our example, we use unnormalized coordinates by setting `normalized = false`.
- **Binding:**  
  You bind a CUDA array to a texture reference using `cudaBindTextureToArray()`.
- **Fetching:**  
  The kernel accesses the texture using `tex2D()`, which returns the value at the specified coordinates.

---

## 3. Practical Exercise: Grayscale Image Conversion Using Textures

We will implement a grayscale conversion kernel. For simplicity, assume the input image is stored as a single-channel (grayscale) image, and the kernel simply reads the pixel value from texture memory and writes it to an output array (or performs minimal processing).

### a) Kernel Code: Grayscale Conversion

```cpp
// grayscaleKernel.cu
#include <cuda_runtime.h>
#include <stdio.h>

// Declare a texture reference for 2D texture sampling.
// We use 'cudaTextureType2D' with 'cudaReadModeElementType' to fetch float elements.
texture<float, cudaTextureType2D, cudaReadModeElementType> texRef;

// Kernel for grayscale conversion using texture memory.
// Each thread reads a pixel from texture memory and writes it to the output array.
__global__ void grayscaleKernel(float *output, int width, int height) {
    // Calculate pixel coordinates (x, y).
    int x = blockIdx.x * blockDim.x + threadIdx.x;
    int y = blockIdx.y * blockDim.y + threadIdx.y;

    // Ensure coordinates are within the image boundaries.
    if (x < width && y < height) {
        // When using unnormalized coordinates, tex2D expects pixel indices plus an offset of 0.5.
        float pixel = tex2D(texRef, x + 0.5f, y + 0.5f);
        // For a grayscale image, simply copy the pixel value.
        output[y * width + x] = pixel;
    }
}

Detailed Comments:

  • Texture Declaration:
    The texture reference texRef is declared as a global variable.
  • Kernel Function:
    Each thread calculates its (x, y) coordinate. A boundary check ensures that only valid pixels are processed.
  • Texture Sampling:
    tex2D() is used to sample the image from texture memory. We add 0.5f to the coordinates for proper center sampling in unnormalized coordinates.
  • Output:
    The fetched pixel value is stored in a linear output array.

b) Host Code: Setting Up Texture Memory and Launching Kernel

cpp
// grayscalePipeline.cu
#include <cuda_runtime.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

// Kernel declaration.
__global__ void grayscaleKernel(float *output, int width, int height);

// Declare texture reference (global).
texture<float, cudaTextureType2D, cudaReadModeElementType> texRef;

#define CUDA_CHECK(call) {                                      \
    cudaError_t err = call;                                     \
    if(err != cudaSuccess) {                                    \
        printf("CUDA Error at %s:%d - %s\n", __FILE__, __LINE__, \
               cudaGetErrorString(err));                        \
        exit(EXIT_FAILURE);                                     \
    }                                                           \
}

int main() {
    // Image dimensions.
    int width = 1024, height = 768;
    size_t imgSize = width * height * sizeof(float);

    // Allocate host memory for the image.
    // For demonstration, we simulate a grayscale image.
    float *h_image = (float*)malloc(imgSize);
    if (!h_image) {
        printf("Failed to allocate host memory for image.\n");
        exit(EXIT_FAILURE);
    }

    // Initialize the image with random grayscale values.
    srand(time(NULL));
    for (int i = 0; i < width * height; i++) {
        h_image[i] = (float)(rand() % 256) / 255.0f;
    }

    // Allocate host memory for output image.
    float *h_output = (float*)malloc(imgSize);
    if (!h_output) {
        printf("Failed to allocate host memory for output.\n");
        free(h_image);
        exit(EXIT_FAILURE);
    }

    // Allocate a CUDA array for the image.
    cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc<float>();
    cudaArray_t cuArray;
    CUDA_CHECK(cudaMallocArray(&cuArray, &channelDesc, width, height));

    // Copy image data from host to the CUDA array.
    CUDA_CHECK(cudaMemcpy2DToArray(cuArray, 0, 0, h_image, width * sizeof(float),
                                   width * sizeof(float), height, cudaMemcpyHostToDevice));

    // Set texture parameters.
    texRef.addressMode[0] = cudaAddressModeClamp;   // Clamp x coordinates.
    texRef.addressMode[1] = cudaAddressModeClamp;   // Clamp y coordinates.
    texRef.filterMode = cudaFilterModePoint;        // Use point sampling (no interpolation).
    texRef.normalized = false;                      // Use unnormalized coordinates.

    // Bind the CUDA array to the texture reference.
    CUDA_CHECK(cudaBindTextureToArray(texRef, cuArray, channelDesc));

    // Allocate device memory for the output image.
    float *d_output;
    CUDA_CHECK(cudaMalloc((void**)&d_output, imgSize));

    // Define kernel launch parameters.
    dim3 threadsPerBlock(16, 16);
    dim3 blocksPerGrid((width + threadsPerBlock.x - 1) / threadsPerBlock.x,
                       (height + threadsPerBlock.y - 1) / threadsPerBlock.y);

    // Launch the grayscale conversion kernel.
    grayscaleKernel<<<blocksPerGrid, threadsPerBlock>>>(d_output, width, height);
    CUDA_CHECK(cudaDeviceSynchronize());

    // Copy the output image from device to host.
    CUDA_CHECK(cudaMemcpy(h_output, d_output, imgSize, cudaMemcpyDeviceToHost));

    // Verify output: Print the first 10 pixel values.
    printf("First 10 pixel values of the processed image:\n");
    for (int i = 0; i < 10; i++) {
        printf("%f ", h_output[i]);
    }
    printf("\n");

    // Cleanup: Unbind texture and free all resources.
    CUDA_CHECK(cudaUnbindTexture(texRef));
    CUDA_CHECK(cudaFreeArray(cuArray));
    CUDA_CHECK(cudaFree(d_output));
    free(h_image);
    free(h_output);

    return 0;
}

Detailed Comments:

  • Image Preparation:
    The host simulates a grayscale image by allocating and initializing an array of pixel values.
  • CUDA Array Allocation:
    A CUDA array is allocated with cudaMallocArray() using a channel descriptor suitable for floats.
  • Data Transfer:
    The host image is copied to the CUDA array using cudaMemcpy2DToArray().
  • Texture Binding:
    The texture parameters are set (clamping, point sampling, unnormalized coordinates) and the CUDA array is bound to the texture reference.
  • Kernel Launch:
    The grayscale conversion kernel is launched with a 2D grid of threads, which samples the texture using tex2D().
  • Output Verification:
    The processed image is copied back to host memory and the first 10 pixel values are printed.
  • Cleanup:
    The texture is unbound and all allocated resources (CUDA array, device memory, host memory) are freed.

4. Common Debugging Pitfalls

PitfallSolution
Using normalized coordinates when not intendedSet texRef.normalized = false if you want to use pixel indices directly.
Incorrect texture parameter settings (e.g., filter mode)Ensure you choose the correct filter mode (point vs. linear) and address modes (clamp, wrap).
Failing to bind or unbind the texture correctlyAlways bind the CUDA array to the texture reference before kernel launch and unbind it after kernel execution using cudaUnbindTexture().
Not synchronizing after kernel executionUse cudaDeviceSynchronize() to ensure kernel execution is complete before copying results back.
Memory copy errors due to incorrect pitch or dimensionsDouble-check the parameters provided to cudaMemcpy2DToArray().

5. Conceptual Diagrams

Diagram 1: Texture Memory Workflow for Grayscale Conversion

mermaid
flowchart TD
    A[Host: Allocate and Initialize Grayscale Image]
    B[Host: Allocate CUDA Array (cudaMallocArray)]
    C[Copy Image Data to CUDA Array (cudaMemcpy2DToArray)]
    D[Set Texture Parameters (Clamp, Point Sampling, Unnormalized)]
    E[Bind CUDA Array to Texture Reference (cudaBindTextureToArray)]
    F[Kernel Launch: Each Thread Computes Pixel Coordinates]
    G[Kernel: Sample Pixel using tex2D() from Texture Memory]
    H[Kernel: Write Pixel Value to Output Array]
    I[Host: Copy Output from Device to Host]
    J[Unbind Texture (cudaUnbindTexture) and Cleanup]
    
    A --> B
    B --> C
    C --> D
    D --> E
    E --> F
    F --> G
    G --> H
    H --> I
    I --> J

Explanation:

  • The diagram details the entire workflow: from preparing image data, copying it to a CUDA array, binding it to a texture, launching the kernel for grayscale conversion, and finally unbinding the texture and cleaning up.

Diagram 2: Kernel Execution Flow for Grayscale Conversion

mermaid
flowchart TD
    A[Kernel Launch]
    B[Each Thread Computes (x, y) Coordinates]
    C[Convert (x, y) to Texture Coordinates (add 0.5)]
    D[Sample Pixel Value using tex2D(texRef, x+0.5, y+0.5)]
    E[Store Sampled Pixel in Output Array]
    
    A --> B
    B --> C
    C --> D
    D --> E

Explanation:

  • This diagram shows how each thread in the kernel computes its coordinates, samples the texture using tex2D(), and writes the output.

6. References & Further Reading

  1. CUDA C Programming Guide – Texture Memory
    CUDA Texture Memory Documentation
  2. CUDA C Best Practices Guide – Texture Memory
    CUDA Best Practices: Texture Memory
  3. NVIDIA CUDA Samples – Texture Memory
    NVIDIA CUDA Samples
  4. NVIDIA NSight Compute Documentation
    NVIDIA NSight Compute
  5. "Programming Massively Parallel Processors: A Hands-on Approach" by David B. Kirk and Wen-mei W. Hwu
  6. NVIDIA Developer Blog
    NVIDIA Developer Blog

7. Conclusion

In Day 29, we have:

  • Introduced texture memory and its benefits for 2D image processing.
  • Implemented a grayscale conversion kernel that samples an image using texture memory.
  • Set up the host code to allocate a CUDA array, bind it to a texture, and launch the kernel.
  • Highlighted common pitfalls such as incorrect normalized coordinates and missing texture binding/unbinding.
  • Provided extensive code examples with detailed inline comments and conceptual diagrams.

This project serves as a foundation for more advanced image processing tasks using CUDA texture memory.


8. Next Steps

  • Extend the Pipeline:
    Implement additional image processing filters (e.g., Sobel edge detection, Gaussian blur) using texture memory.
  • Integrate with Surface Memory:
    Experiment with using surface memory for read-write operations alongside texture memory.
  • Profile and Optimize:
    Use NVIDIA NSight Compute to profile texture fetch performance and optimize parameters (filter mode, address mode).
  • Real-World Application:
    Integrate this approach into a real-time image processing application.

Happy CUDA coding, and continue exploring the power of texture memory for high-performance image processing!


```markdown
# Day 30: Surface Memory

In this lesson, we explore **surface memory** in CUDA—a specialized memory space that supports both read and write operations and is optimized for 2D data. Surface memory is often used for applications that require random read-write access to image data or other 2D/3D datasets. In this project, we will implement a simple image processing kernel that writes to an output image buffer using surface memory. We will emphasize the importance of proper coordinate boundary checks to ensure that memory accesses are valid.

**Key Learning Objectives:**
- Understand what surface memory is and when to use it.
- Learn how to allocate a CUDA array for surface memory.
- Bind a CUDA array to a surface object.
- Write a kernel that writes output using surface memory.
- Handle coordinate boundary checks to avoid illegal memory accesses.
- Use debugging strategies and proper error checking.
- Reference the CUDA C Programming Guide for surface memory.
  
**References:**
- [CUDA C Programming Guide – Surface Reference](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#surface-memory)
- [CUDA C Best Practices Guide](https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html)

---

## Table of Contents

1. [Overview](#1-overview)
2. [What is Surface Memory?](#2-what-is-surface-memory)
3. [Implementing Surface Memory in CUDA](#3-implementing-surface-memory-in-cuda)
   - [a) Allocating a CUDA Array for Surface Memory](#a-allocating-a-cuda-array-for-surface-memory)
   - [b) Binding a CUDA Array to a Surface Object](#b-binding-a-cuda-array-to-a-surface-object)
   - [c) Kernel Code for Writing to Surface Memory](#c-kernel-code-for-writing-to-surface-memory)
   - [d) Host Code for Launching the Kernel and Cleanup](#d-host-code-for-launching-the-kernel-and-cleanup)
4. [Common Debugging Pitfalls and Best Practices](#4-common-debugging-pitfalls-and-best-practices)
5. [Conceptual Diagrams](#5-conceptual-diagrams)
6. [References & Further Reading](#6-references--further-reading)
7. [Conclusion](#7-conclusion)
8. [Next Steps](#8-next-steps)

---

## 1. Overview

Surface memory in CUDA is a read/write memory space that is optimized for 2D and 3D data. It is similar to texture memory but supports write operations, making it ideal for output buffers in image processing pipelines. In this project, we will:
- Allocate a CUDA array designed for surface load/store operations.
- Bind the CUDA array to a surface object.
- Write an image processing kernel that writes an output image (e.g., a simple transformation or filter) to the surface.
- Ensure that coordinate boundary checks are performed to avoid invalid memory accesses.
- Clean up all resources properly.

---

## 2. What is Surface Memory?

**Surface Memory**:
- **Read/Write Capability:** Unlike texture memory, surface memory allows both read and write operations.
- **Optimized for 2D/3D Data:** It is ideal for applications that need random access to multi-dimensional data.
- **Use Cases:** Commonly used for output buffers in image processing, video processing, and applications where intermediate results must be stored and later read.

**Important Considerations:**
- **Coordinate Boundary Checks:** Always ensure that your kernel does not read or write outside the bounds of the allocated surface.
- **Binding and Unbinding:** Properly bind a CUDA array to a surface object before kernel execution and unbind/destroy the surface object afterward.
- **Error Checking:** Use error-checking macros to catch any CUDA API call errors.

---

## 3. Implementing Surface Memory in CUDA

### a) Allocating a CUDA Array for Surface Memory

Surface memory requires a CUDA array with the flag `cudaArraySurfaceLoadStore` set in the allocation call.

```cpp
// Allocate a CUDA array for surface memory.
cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc<float>();
cudaArray_t cuArray;
CUDA_CHECK(cudaMallocArray(&cuArray, &channelDesc, 1024, 768, cudaArraySurfaceLoadStore));

Comments:

  • The cudaMallocArray() function allocates a CUDA array with the specified dimensions (e.g., 1024x768) and channel descriptor.
  • The flag cudaArraySurfaceLoadStore enables surface load/store operations.

b) Binding a CUDA Array to a Surface Object

Before the kernel can write to the surface memory, the CUDA array must be bound to a surface object.

cpp
// Set up the resource descriptor for the CUDA array.
cudaResourceDesc resDesc = {};
resDesc.resType = cudaResourceTypeArray;
resDesc.res.array.array = cuArray;

// Create the surface object.
cudaSurfaceObject_t surfObj = 0;
CUDA_CHECK(cudaCreateSurfaceObject(&surfObj, &resDesc));

Comments:

  • cudaResourceDesc describes the resource (here, a CUDA array).
  • cudaCreateSurfaceObject() creates a surface object that can be used in kernels for read/write operations.

c) Kernel Code for Writing to Surface Memory

The following kernel writes to a surface memory using surf2Dwrite(). In this example, we implement a simple image transformation that inverts the pixel intensity.

cpp
// surfaceKernel.cu
#include <cuda_runtime.h>
#include <stdio.h>

// Kernel that inverts the grayscale image and writes to the surface memory.
__global__ void invertImageKernel(cudaSurfaceObject_t surfObj, int width, int height) {
    // Calculate pixel coordinates.
    int x = blockIdx.x * blockDim.x + threadIdx.x;
    int y = blockIdx.y * blockDim.y + threadIdx.y;

    // Check boundaries to avoid out-of-bounds access.
    if (x < width && y < height) {
        // Read the current pixel value using surf2Dread.
        float pixel;
        surf2Dread(&pixel, surfObj, x * sizeof(float), y);
        
        // Invert the pixel intensity (assuming pixel value is in [0,1]).
        float inverted = 1.0f - pixel;
        
        // Write the inverted value back to the surface.
        // The write coordinates use the same convention as read.
        surf2Dwrite(inverted, surfObj, x * sizeof(float), y);
    }
}

Comments:

  • Each thread computes its pixel (x, y) coordinates.
  • Boundary checks ensure that the thread does not access outside the image.
  • The kernel uses surf2Dread() to read a pixel from the surface.
  • The pixel intensity is inverted, and surf2Dwrite() writes the result back to the surface.
  • Important: The multiplication by sizeof(float) converts the pixel coordinate to a byte offset.

d) Host Code: Setting Up Texture Memory and Launching Kernel

Below is the complete host code that:

  • Loads a simulated grayscale image.
  • Allocates and initializes a CUDA array for surface memory.
  • Binds the CUDA array to a surface object.
  • Launches the kernel.
  • Copies the output back to host memory for verification.
  • Cleans up all resources.
cpp
// surfaceMemoryPipeline.cu
#include <cuda_runtime.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

// Kernel declaration.
__global__ void invertImageKernel(cudaSurfaceObject_t surfObj, int width, int height);

// Macro for error checking.
#define CUDA_CHECK(call) {                                        \
    cudaError_t err = call;                                       \
    if(err != cudaSuccess) {                                      \
        printf("CUDA Error at %s:%d - %s\n", __FILE__, __LINE__,    \
               cudaGetErrorString(err));                          \
        exit(EXIT_FAILURE);                                       \
    }                                                             \
}

int main() {
    // Image dimensions.
    int width = 1024, height = 768;
    size_t imgSize = width * height * sizeof(float);

    // Allocate host memory for input image.
    float *h_image = (float*)malloc(imgSize);
    float *h_output = (float*)malloc(imgSize);
    if (!h_image || !h_output) {
        printf("Host memory allocation failed.\n");
        exit(EXIT_FAILURE);
    }

    // Initialize the image with random grayscale values (0 to 1).
    srand(time(NULL));
    for (int i = 0; i < width * height; i++) {
        h_image[i] = (float)(rand() % 256) / 255.0f;
    }

    // Allocate a CUDA array for surface memory.
    cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc<float>();
    cudaArray_t cuArray;
    CUDA_CHECK(cudaMallocArray(&cuArray, &channelDesc, width, height, cudaArraySurfaceLoadStore));

    // Copy the image data from host to the CUDA array using a 2D copy.
    CUDA_CHECK(cudaMemcpy2DToArray(cuArray, 0, 0, h_image, width * sizeof(float),
                                   width * sizeof(float), height, cudaMemcpyHostToDevice));

    // Create a surface object for output.
    cudaResourceDesc resDesc = {};
    resDesc.resType = cudaResourceTypeArray;
    resDesc.res.array.array = cuArray;
    cudaSurfaceObject_t surfObj = 0;
    CUDA_CHECK(cudaCreateSurfaceObject(&surfObj, &resDesc));

    // Launch the kernel to invert the image.
    dim3 threadsPerBlock(16, 16);
    dim3 blocksPerGrid((width + threadsPerBlock.x - 1) / threadsPerBlock.x,
                       (height + threadsPerBlock.y - 1) / threadsPerBlock.y);
    invertImageKernel<<<blocksPerGrid, threadsPerBlock>>>(surfObj, width, height);
    CUDA_CHECK(cudaDeviceSynchronize());

    // Copy the processed image from the CUDA array back to a device buffer.
    // Allocate device memory for output copy.
    float *d_output;
    CUDA_CHECK(cudaMalloc((void**)&d_output, imgSize));
    CUDA_CHECK(cudaMemcpy2DFromArray(d_output, width * sizeof(float), cuArray, 0, 0,
                                     width * sizeof(float), height, cudaMemcpyDeviceToDevice));

    // Copy the output data from device to host.
    CUDA_CHECK(cudaMemcpy(h_output, d_output, imgSize, cudaMemcpyDeviceToHost));

    // Print the first 10 pixel values for verification.
    printf("First 10 pixel values of the inverted image:\n");
    for (int i = 0; i < 10; i++) {
        printf("%f ", h_output[i]);
    }
    printf("\n");

    // Cleanup: Unbind texture if applicable (not needed for surfaces), destroy surface object, free device memory and host memory.
    CUDA_CHECK(cudaDestroySurfaceObject(surfObj));
    CUDA_CHECK(cudaFreeArray(cuArray));
    CUDA_CHECK(cudaFree(d_output));
    free(h_image);
    free(h_output);

    return 0;
}

Detailed Comments:

  • Host Memory:
    The host allocates memory for the input image and an output buffer for verification.
  • CUDA Array Allocation:
    A CUDA array is allocated with the cudaArraySurfaceLoadStore flag to enable surface operations.
  • Data Transfer:
    The host image is copied to the CUDA array using cudaMemcpy2DToArray().
  • Surface Object:
    A cudaSurfaceObject_t is created by initializing a resource descriptor and calling cudaCreateSurfaceObject().
  • Kernel Launch:
    The invertImageKernel is launched to invert the image. Each thread fetches a pixel using surf2Dread() and writes the inverted value using surf2Dwrite().
  • Output Verification:
    The output is copied from the CUDA array (via a device copy to a linear buffer) and then to the host for verification.
  • Cleanup:
    The surface object is destroyed, and all allocated resources are freed.

4. Common Debugging Pitfalls and Best Practices

PitfallSolution
Incorrect normalized coordinates in texture/surface fetchEnsure normalized is set appropriately (false for pixel indices).
Failing to bind the CUDA array to a surface objectAlways bind using cudaCreateSurfaceObject() and check for errors.
Missing coordinate boundary checks in the kernelAdd proper boundary checks (e.g., ensure x and y are within image dimensions).
Not synchronizing after kernel executionUse cudaDeviceSynchronize() to ensure kernel completion before copying data back.
Resource leaks (not freeing device memory, arrays, or destroying surface objects)Always include cleanup code to free all allocated resources.

5. Conceptual Diagrams

Diagram 1: Surface Memory Workflow for Image Processing

mermaid
flowchart TD
    A[Host: Load Image Data]
    B[Allocate CUDA Array (cudaMallocArray) with Surface Flags]
    C[Copy Image Data to CUDA Array (cudaMemcpy2DToArray)]
    D[Create and Bind Surface Object (cudaCreateSurfaceObject)]
    E[Kernel: For each pixel, read using surf2Dread, process, and write using surf2Dwrite]
    F[Copy Processed Data from CUDA Array to Device Buffer (cudaMemcpy2DFromArray)]
    G[Copy Output from Device to Host]
    H[Cleanup: Destroy Surface Object, Free Array and Memory]
    
    A --> B
    B --> C
    C --> D
    D --> E
    E --> F
    F --> G
    G --> H

Explanation:

  • The diagram shows the complete process: from loading image data, allocating a CUDA array, binding it to a surface, kernel execution, to copying back the results and cleaning up.

Diagram 2: Kernel Execution Flow for Surface Memory

mermaid
flowchart TD
    A[Kernel Launch]
    B[Each thread computes (x, y) pixel coordinates]
    C[Boundary Check: x and y within image dimensions]
    D[Read pixel value using surf2Dread()]
    E[Process pixel (e.g., invert intensity)]
    F[Write processed pixel using surf2Dwrite()]
    
    A --> B
    B --> C
    C --> D
    D --> E
    E --> F

Explanation:

  • This diagram details how each thread in the kernel operates:
    • Computes its pixel coordinates.
    • Ensures it doesn't access out-of-bound pixels.
    • Reads the pixel from surface memory, processes it, and writes the result back.

6. References & Further Reading

  1. CUDA C Programming Guide – Surface Reference
    CUDA Surface Memory Documentation
  2. CUDA C Best Practices Guide
    CUDA Best Practices: Memory Management
  3. NVIDIA CUDA Samples – Texture & Surface Memory
    NVIDIA CUDA Samples
  4. NVIDIA NSight Compute Documentation
    NVIDIA NSight Compute
  5. "Programming Massively Parallel Processors: A Hands-on Approach" by David B. Kirk and Wen-mei W. Hwu
  6. NVIDIA Developer Blog
    NVIDIA Developer Blog

7. Conclusion

In Day 29, we implemented an image processing pipeline using surface memory. We:

  • Allocated a CUDA array with surface load/store capabilities.
  • Copied image data into the CUDA array.
  • Bound the CUDA array to a surface object.
  • Launched a kernel that performed a grayscale (or inversion) operation using surf2Dread() and surf2Dwrite().
  • Ensured proper boundary checks and resource cleanup.
  • Provided extensive code examples, detailed inline comments, and conceptual diagrams to illustrate the flow.

8. Next Steps

  • Extend Functionality:
    Modify the kernel to perform more complex image processing tasks (e.g., applying different filters such as edge detection or blurring).
  • Integrate with Texture Memory:
    Combine surface and texture memory techniques for mixed read/write image processing tasks.
  • Optimize:
    Use NVIDIA NSight Compute to profile the performance and optimize memory access patterns.
  • Real-World Application:
    Implement a complete image processing application that loads images from disk, processes them on the GPU, and saves the output.

Happy CUDA coding, and continue exploring the capabilities of surface memory for high-performance image processing!



## 贡献者

<NolebaseGitContributors />


## 文件历史

<NolebaseGitChangelog />

撰写